Data Visualization

elena casiraghi

Ufficio 6006, Dipartimento di Informatica

Mail to: <u>elena.casiraghi@unimi.it</u>

casiraghi@di.unimi.it

Let's start with some nice DataVis / SciVis video

Visual explanation of exponential growth and epidemics

The Big Data era

"All too much. Monstrous amounts of data."

The Economist. 25 Febbraio 2010

2008:

[...] According to a **2008** study by International Data Corp (IDC), a market-research firm,

around 1,200 exabytes of digital data will be generated this year (2010). [...]

What about the information that was actually consumed in 2008?

An example:

In 2008 American households were bombarded with 3.6 zettabytes of information (about 34 gigabytes per person per day).

Only 5% of the information that is created is "structured", meaning it comes in a standard format of words or numbers that can be read by computers.

The rest are data flows less easily retrievable, understandable and usable.

In 2020, there will be around 40 trillion gigabytes (~= 40 zettabytes) of data (From IDC report "The Digital Universe in 2020")

"The digital universe would double every two years until 2020"

2010 -> 1.2 zettabyte

2012 -> 2.4 zettabyte

2014 -> 4.8 zettabyte

2016 -> 9.6 zettabyte

2018 -> 19.2 zettabyte

2020 -> 38.4 (~= 40 zettabytes)

In 2012, only 0.5% of all data was analyzed and useful data was the 22%.

(Source: The Guardian)

In 2012 only 22% of all the data had the potential for analysis (Source: IDC). By 2020, the percentage of useful data, i.e., the information that has the potential for analysis, would jump to 37% (Source: IDC).

2017: the 2. 90% of all data has been created in the last two years.

(Source: IBM)

In 2012 we had 2.5 billion internet users.

In 2014 we had 3 billion

In 2019 we have 4.1 billion people online AND

in 2019, internet users spent 1.2 billion years online (Source Digital 2019)

Data inflation

Unit	Size	What it means
Bit (b)	1 or 0	Short for "binary digit", after the binary code (1 or 0) computers use to store and process data
Byte (B)	8 bits	Enough information to create an English letter or number in computer code. It is the basic unit of computing
Kilobyte (KB)	1,000, or 2 ¹⁰ , bytes	From "thousand" in Greek. One page of typed text is 2KB
Megabyte (MB)	1,000KB; 2 ²⁰ bytes	From "large" in Greek. The complete works of Shakespeare total 5MB A typical pop song is about 4MB
Gigabyte (GB)	1,000MB; 2 ³⁰ bytes	From "giant" in Greek. A two-hour film can be compressed into 1-2GE
Terabyte (TB)	1,000GB; 2 ⁴⁰ bytes	From "monster" in Greek. All the catalogued books in America's Library of Congress total 15TB
Petabyte (PB)	1,000TB; 2 ⁵⁰ bytes	All letters delivered by America's postal service this year will amount to around 5PB. Google processes around 1PB every hour
Exabyte (EB)	1,000PB; 2 ⁶⁰ bytes	Equivalent to 10 billion copies of The Economist
Zettabyte (ZB)	1,000EB; 2 ⁷⁰ bytes	The total amount of information in existence this year is forecast to be around 1.2ZB
Yottabyte (YB)	1,000ZB; 2 ⁸⁰ bytes	Currently too big to imagine

2

5. Internet users generate about 2.5 quintillion bytes of data each day.

(Source: Data Never Sleeps 5.0)

In 2012 we had 2.5 billion internet users.

In 2014 we had 3 billion

In 2019 we have 4.1 billion people online.

TOOLS FOR BIG DATA EXPLORATION, ANALYSIS, AND PROCESSING ARE NEEDED

Using big data, Netflix saves \$1 billion per year on customer retention. (Source: Statista, Inside Big Data)

Netflix provides recommendations through big data analysis.

Which data? searches, ratings, re-watched programs, and so on.

In 2009 Netflix invested \$1 million in enhancing their recommendation algorithm.

In 2015 Netflix invested \$651 million in enhancing their technologies and developments

In 2018, the budget reached \$1.3 billion.

FROM THE BEGINNINGS TO 2003 NOW in TWO DAYS humans generated about 5 exabytes of data, we generate 5 exabytes.

5 exabytes: more than 200.000 years of DVD videos.

What kind of data?

- chat, e-mail, phone-calls, photos, ...
- Unstructured data produced by processes and by communications between, e.g., computers, mobiles, manufacturing systems...

Erich Schmidt, ex- CEO di Google 2010

3/17/2020

0

"It is a very sad thing that nowadays there is so little useless information,"

Oscar Wilde's quotation (1894)

ALL THIS DATA IS USEFUL!

Examples:

- to understand user preferences
- to follow the behaviour of machineries and predict damages

(A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design

Implications - DOI: <u>10.1109/ACCESS.2019.2953499</u>)

• to monitor persons' health

(Human Digital Twin for Fitness Management - DOI: <u>10.1109/ACCESS.2020.2971576</u>)

4V for big data

- Volume (storage of large amounts of data),
- Variety (the heterogenic nature of data),
- Velocity (the speed of acquisition, opposed to long processing time) of data,
- Value (the significance of the information carried by data).

If we "see" (understand) data we may:

- reduce their volume: discard redundant/unuseful infos;
- speed computation;
- increase value by extrapolating hidden infos;
- exploit their eterogeneity by applying ad hoc data-fusion techniques;

So how do we deal with so much data?

... the information anxiety

The 70s: **Richard Saul Wurman** (born March 26, 1935), American architect and graphic designer, predicts the data and information explosion and firstly mentions the Information architecture (IA) field.

Information architecture (IA): focuses on organizing, structuring, and labeling data and information in an effective and sustainable way.

The goals of IA:

- to help users understand information and complete tasks
 - understand information = how pieces fit together, how items relate and interact with each other
- define principles to bring information to the digital landscape
 - principles of information design
 - principles of shared information environments

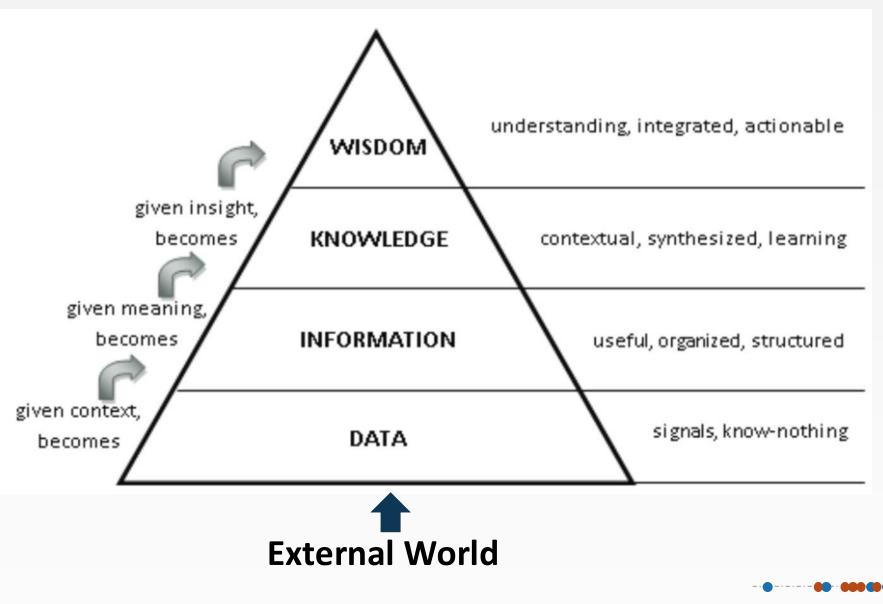
OTHER DEFINITIONS OF IA:

- 1 A subset of data architecture where usable data (a.k.a. information) is constructed and designed or arranged in a fashion most useful or empirically holistic to the users of this data.
- 2 The conceptual framework surrounding information, providing context, awareness of location and sustainable structure.

Therefore Information Architecture helps winning the *in*formation anxiety

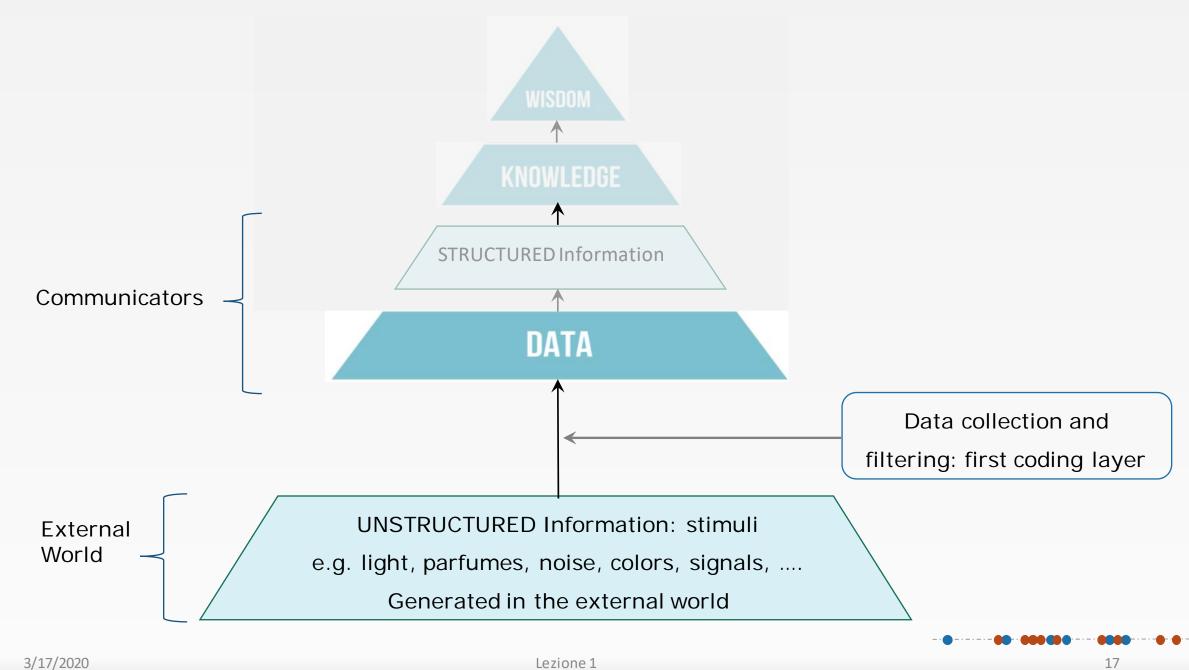
Information Anxiety (Wurman):

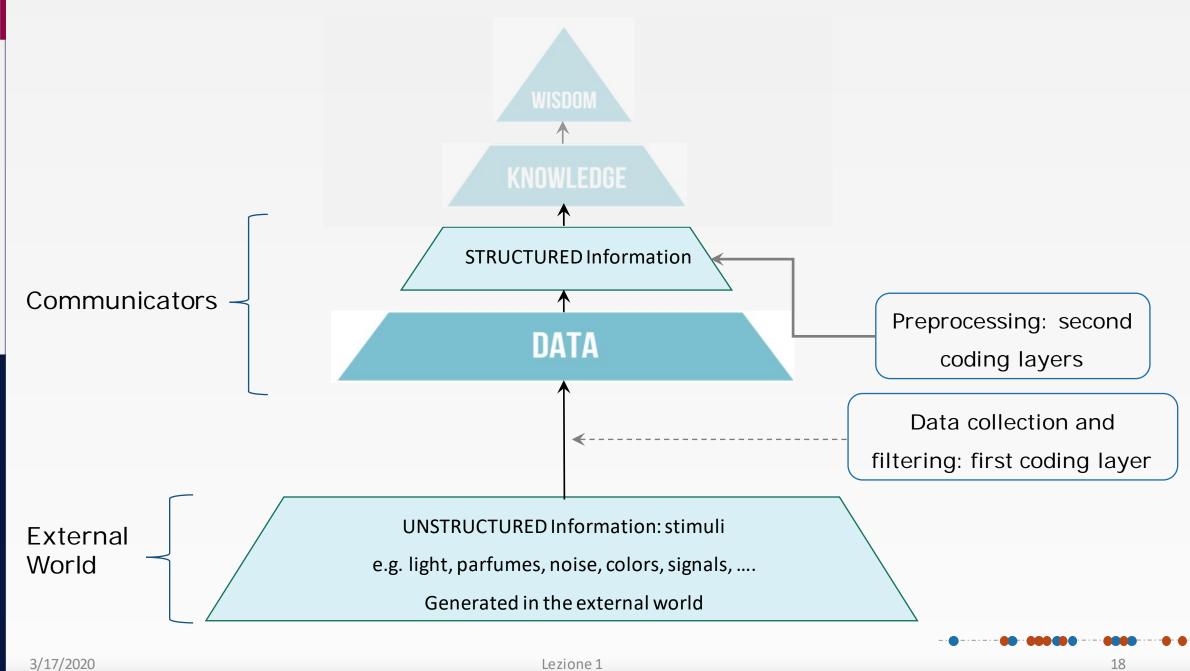
"caused by an overwhelming flood of data, much of it from computers and much of it unintelligible."



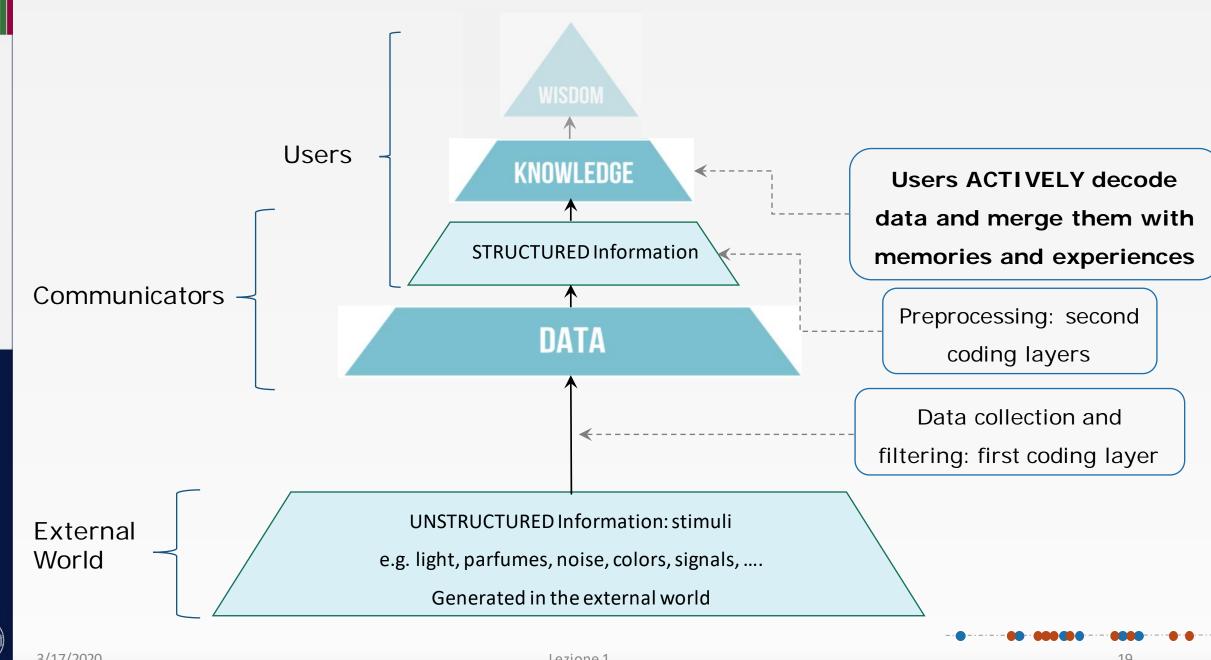
Source, Rowley, Jennifer.

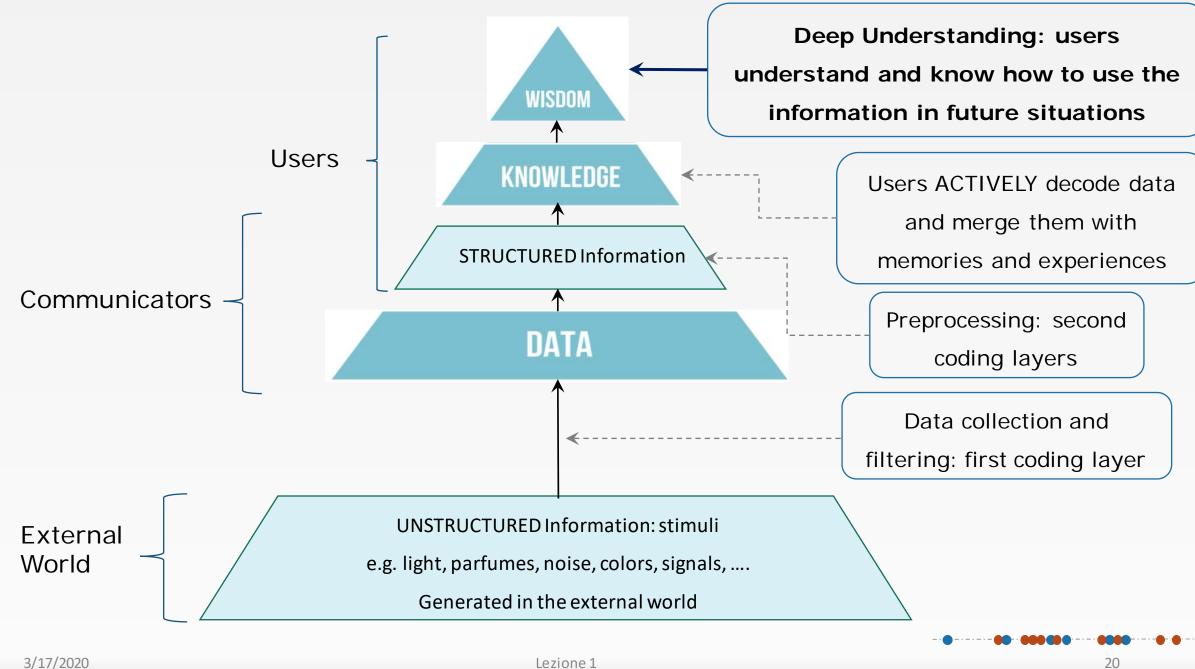
"The wisdom hierarchy: representations of the DIKW hierarchy". Journal of Information and Communication Science. 33 (2): 163–180, 2007

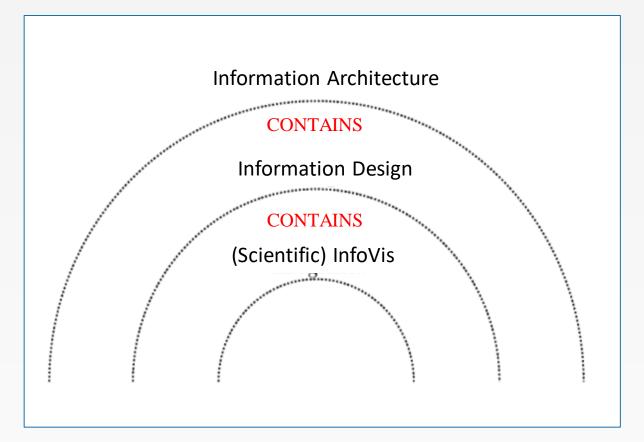

DIKW (Data, Information, Knowledge, Wisdom) Pyramid

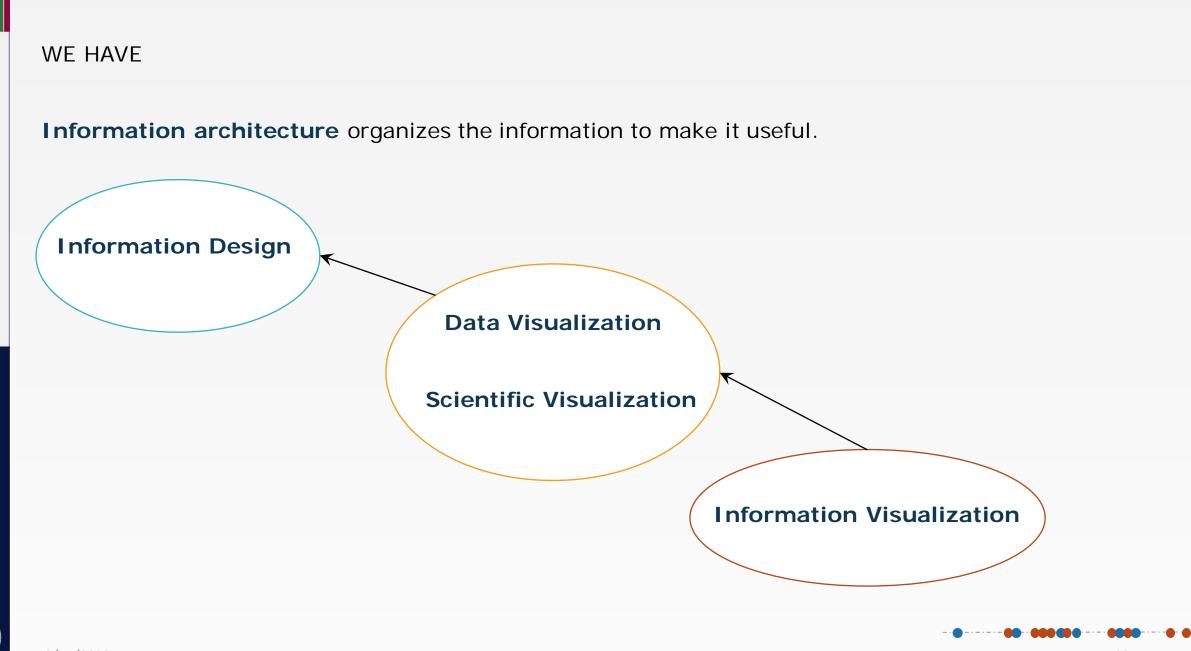


3/17/2020


16







3/17/2020

3/17/2020

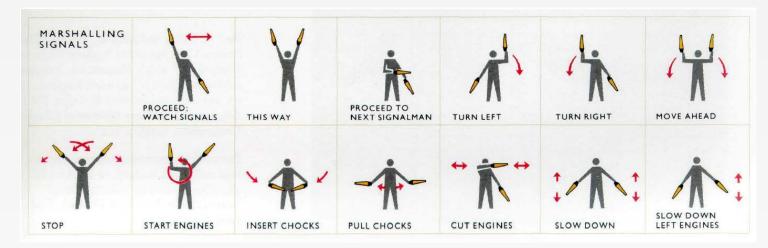
Information Design (ID) "is the detailed planning of specific information that is to be provided to a particular audience to meet specific objectives".

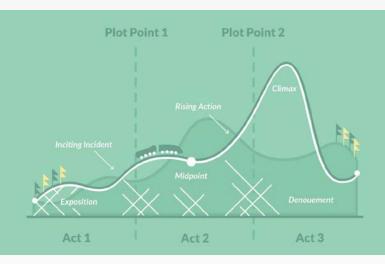
Simplifies, Integrates, Filters and Selectively Emphasizes information in a way that is user-oriented.

Inherits by dataViz and InfoViz and SciViz the exploitation of psychology and physiology principles (e.g.: how users access, learn, and remember information; the impact of colors, shapes, and patterns, learning styles).

Encompasses many different responsibilities and tasks, including:

- a) Analysis of users' needs and learning styles
- b) Selection of the most effective layouts, colors, fonts, and graphics
- c) Identification of most effective navigational infrastructures
- d) Application of principles of simplification, synthesis and integration
- e) Testing of readability, contrast and legibility in adverse situations and for handicapped users


(Luigi Canali De Rossi: What is Information Design)



Lezione 1

INFORMATION VISUALIZATION

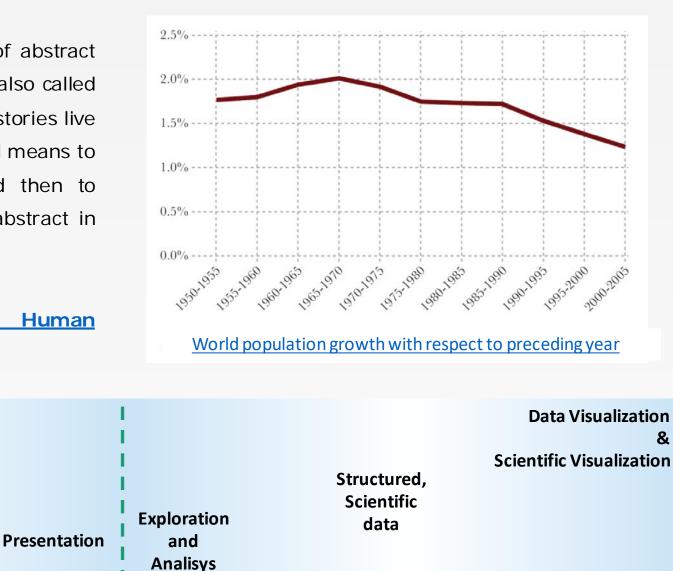
Information Visualization helps us finding the best way to visualize infos

Born in journalism, **Information graphics or infographics** are graphic visual representations of information, data, or knowledge intended to present information quickly and clearly.

(Smiciklas, Mark. The Power of Infographics: Using Pictures to Communicate and Connect with Your Audiences, 2012, ISBN 9780789749499.)

STRUCTURED infos are presented through mixtures of (many) images, (many) plots and graphs, (few) text.

Principles of perception and vision are used to transmit information and ideas.



Data visualization is the graphical display of abstract information for two purposes: sense-making (also called data analysis) and communication. Important stories live in our data and data visualization is a powerful means to discover and understand these stories, and then to present them to others. The information is abstract in that it describes things that are not physical.

Stephen Few, Data Visualization for Human Perception

Unstructured

data

InfoVis

Infographic

3/17/2020

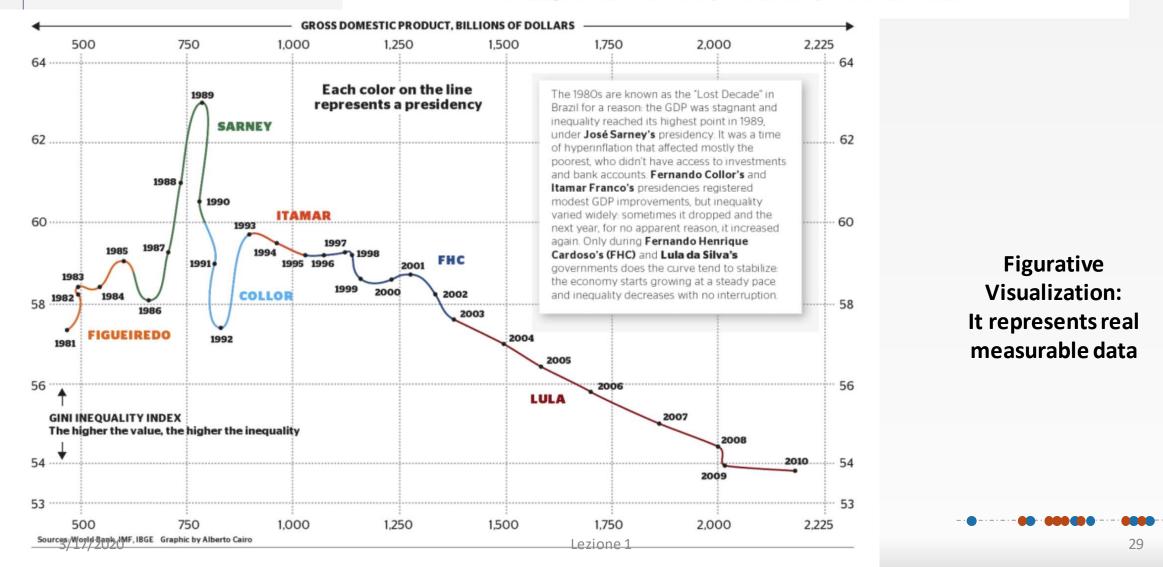
&

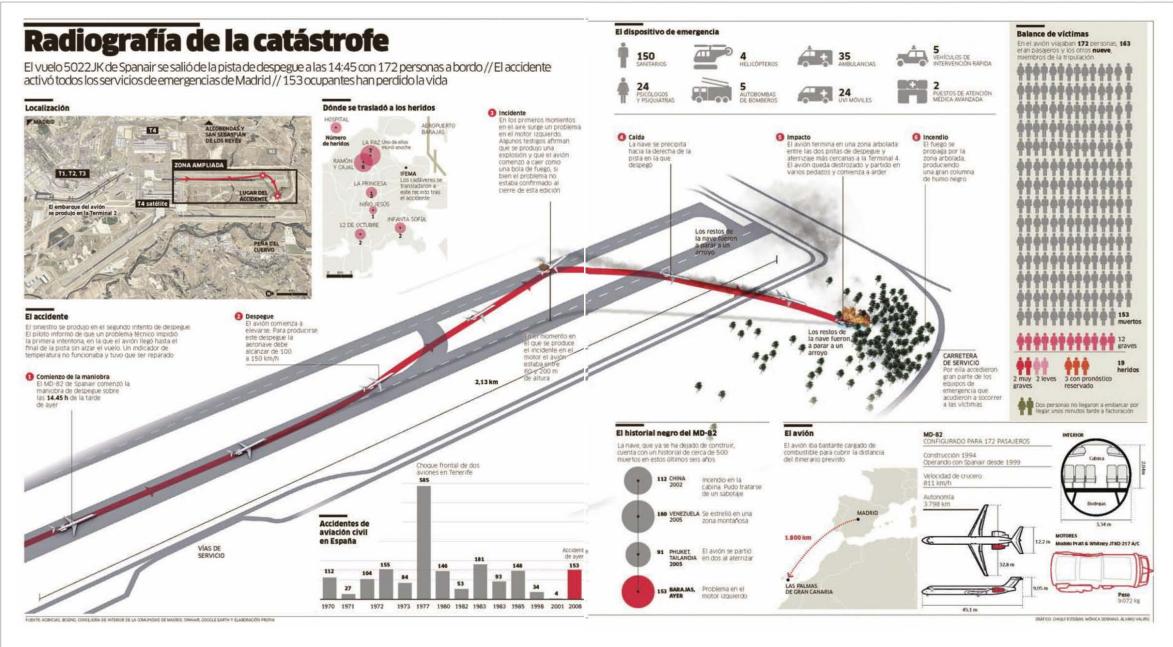
Lozion

Visualize = "make certain phenomena and portions of reality visible and understandable; many of these phenomena are not directly or naturally accessible to the naked eye and many are not even visual in nature" (Joan Costa)

Visualize = "make certain phenomena and portions of reality visible and understandable; many of these phenomena are not directly or naturally accessible to the naked eye and many are not even visual in nature" (Joan Costa)

Visualizations may be:


Figurative	they display real data.	
Visualizations :	e.g.: results of election per states / countries / cities, results of	
	experiments for different algorithms	


Not figurative orthey represent informations and abstract data that can't beAbstract:measured.

e.g.: user manuals for hoven, turistic maps (where turistic spots are highlighted, aerplane disaster, opinions about elections

When the Brazilian Economy Improves, Inequality Doesn't Drop

The graphic below shows the correlation between Brazilian GDP (horizontal axis) and inequality (vertical axis) between 1981 and 2010. The position of the points, each representing a year, depends on how high GDP and inequality were. You can notice, for instance, that the economy grew between 1986 and 1989 because the line tends to move to the right, but inequality also grew, as the point representing 1989 is much higher than the ones before. You can also see that, during Lula da Silva's government, the economy expanded almost as much as during the terms of the other presidents who preceded him combined.

B

Figura 1.10 Público (Spagna). Incidente aereo all'aeroporto di Barajas, Madrid, 21 agosto 2008. Infografica di Chiqui Esteban, Mónica Serrano, Álvaro Valiño.

Abstract Visualization: it represents a situation

30

Visualizations use conventional methods that are not related to the represented data.

Art and perception are part of the design.

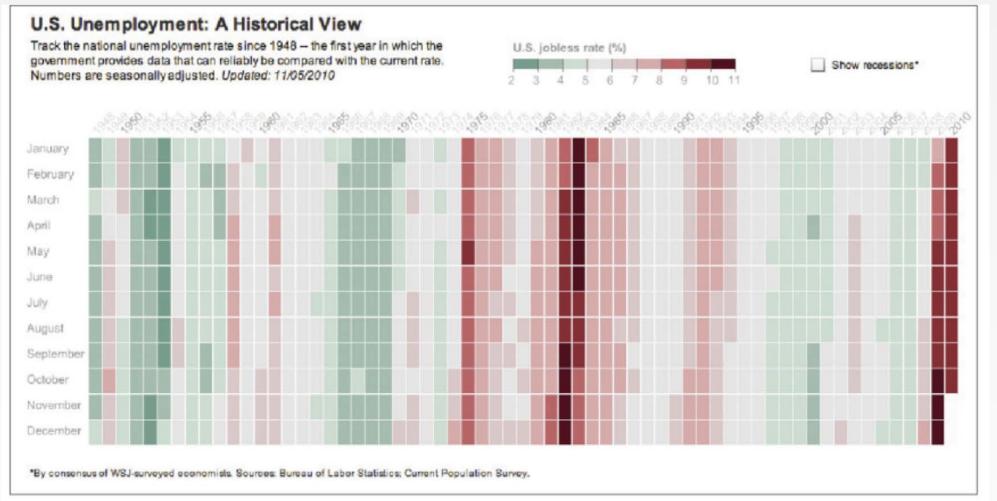


Figura 1.11 The Wall Street Journal. Grafico web "U.S. Unemployment: A Historical View". (Riprodotto per gentile concessione di The Wall Street Journal, Copyright © 2010 Dow Jones & Company, Inc. All Rights Reserved Worldwide)

31

Nathan Yau.

10 LEADING CAUSES OF DEATH BY AGE

Watch how they changed from 1999 through 2016.

Causes of death

	auses of	ucatti		Female	Male	200	1 Pla	y Pa	use			
	Age 1-4	5-9	10-14	15-19	20-24	25-34	35-44	45-54	55-64	65-74	75-84	85+
#1	Accidental injury	Transport accidents	Transport accidents	Transport accidents	Transport accidents	Malignant neoplasms	Malignant neoplasms	Malignant neoplasms	Malignant neoplasms	Malignant neoplasms	Malignant neoplasms	Ischaemic heart disease
2	Transport accidents	Malignant neoplasms	Malignant neoplasms	Assault	Assault	Transport accidents	Transport accidents	Ischaemic heart diseases	Ischaemic heart diseases	Ischaemic heart diseases	Ischaemic heart diseases	Cerebrovascu diseases
3	Malignant neoplasms	Accidental injury	Accidental injury		Malignant neoplasms	Accidental injury	Accidental injury	Cerebrovascular diseases	Chronic lower respiratory diseases	Chronic lower respiratory diseases	Cerebrovascular diseases	Other forms
4	Assault	Assault	Assault	Intentional self-harm	Intentional	Intentional self-harm	Ischaemic heart diseases	Diseases of	Cerebrovascular diseases	Cerebrovascular diseases	Other forms of heart disease	heart disease
5	Congenital malform. of circ. sys.	Cerebral palsy	Intentional self-harm	Accidental injury	self-harm	Assault	HIV	liver	Diabetes mellitus	Other forms of heart disease	Chronic lower respiratory diseases	Other degen. diseases of nerv. sys.
6	Ill-defined and unknown causes	Other forms of	Other forms of heart disease	Ill-defined	Ill-defined		Intentional self-harm	Diabetes mellitus	Other forms of heart disease	Diabetes mellitus	Diabetes mellitus	Influenza an pneumonia
7	Metabolic disorders	Congenital malform. of circ. sys.	Cerebral palsy	and unknown causes	and unknown causes	Other forms of heart disease	Diseases of liver	Transport accidents	Diseases of liver	Renal failure	Other degen. diseases of nerv. sys.	Symptomatic mental disorders
8	Other forms of Congenital malform. of	Congenital malform. of nervous sys. disorders	Metabolic	Metabolic disorders		Ill-defined and unknown causes	Cerebrovascular diseases	Accidental injury	Hypertensive diseases	Hypertensive diseases	Influenza and pneumonia	Chronic lower respiratory diseases
9	nervous sys.	012010612	Congenital malform. of circ. sys.	Cerebral palsy	Systemic connective tissue disordors	Cerebrovascular diseases		diseases	Other bacterial diseases	Influenza and pneumonia	Hypertensive diseases	Hypertensive diseases
10	Other bacterial diseases	Neoplasms of uncertain beheriour disorders of the nervous	Ill-defined and unknown causesc lower respiratory diseases	Othgenital bačterbalof diseasess.	Cerebrovascular diseases	Diabetesc mellitusseases	≛≩≩adefined and unknown causes	Intentional self-harm	Renal failure		Sýmptomatýć meňtales and dýsókderses	Diseases of arteries and capillaries

Per 100,000 people in age group

500

1000

3/17/2

At the <u>wikipedia</u> page we can see many different ways to see the U.S. unemployment during different periods and its correlation with other factors, e.g. carceration, changes in net employment, presidents,

Compare the seen page with the one describing the Italian <u>unemployment rate</u> or the <u>youth italian unemployment rate</u>

WHAT DO YO NOTICE WHEN COMPARING THE PAGES?

WHY ARE DATAVIZ/SCIVIZ SO USEFUL

Let's watch a video:

https://www.ted.com/talks/hans rosling the best stats you ve ever seen

INFORMATION VISUALIZATION

DATA and SCIENTIFIC VISUALIZATION (DATAVIZ - SCIVIZ) definitions

The use of computer-supported, interactive, visual representations of

abstract data

or

physical data

to amplify cognition. Cognition is the acquisition or use of knowledge.

(Card, S. and Mackinlay, J. and Shneiderman, B., Readings in Information Visualization: Using Vision to

Think, Morgan Kaufmann Publishers, 1999)

	DATA and SCIENTIFIC VISUALIZATION (DATAVIZ - SCIVIZ): ONE definition
The mean	The use of computer-supported, interactive, visual representations of
	abstract data
	or
	physical data
The aim	to amplify cognition. Cognition is the acquisition or use of knowledge.
	(Card, S. and Mackinlay, J. and Shneiderman, B., Readings in Information Visualization: Using Vision to

Think, Morgan Kaufmann Publishers, 1999)

36

DATA and SCIENTIFIC VISUALIZATION (DATAVIZ - SCIVIZ): ONE definition

The use of computer-supported, interactive, visual representations of

(Card, S. and Mackinlay, J. and Shneiderman, B., Readings in Information Visualization: Using Vision to

Think, Morgan Kaufmann Publishers, 1999)

UNIVERSITÀ DEGLI STUDI DI MILANO

"Excellence in statistical graphics consists of complex ideas communicated with clarity, precision and efficiency."

Edward Tufte, "Envisioning Information"

Edward Tufte, "The Visual Display of Quantitative Information"

Principles of Infographics (and of Data Visualization)

Infographics, (Scientific/Data Visualizations) should:

- show the data
- induce the viewer to think about the substance rather than about methodology, graphic design, the technology of graphic production, or something else
- avoid distorting what the data has to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the fine structure
- serve a reasonably clear purpose: description, exploration, tabulation, or decoration
- be closely integrated with the statistical and verbal descriptions of a data set.

Graphics *reveal* data. Indeed graphics can be more precise and revealing than conventional statistical computations.

Matt Ridley, "The rational Optimist: how prosperity evolves" (2010)

Forecasts:

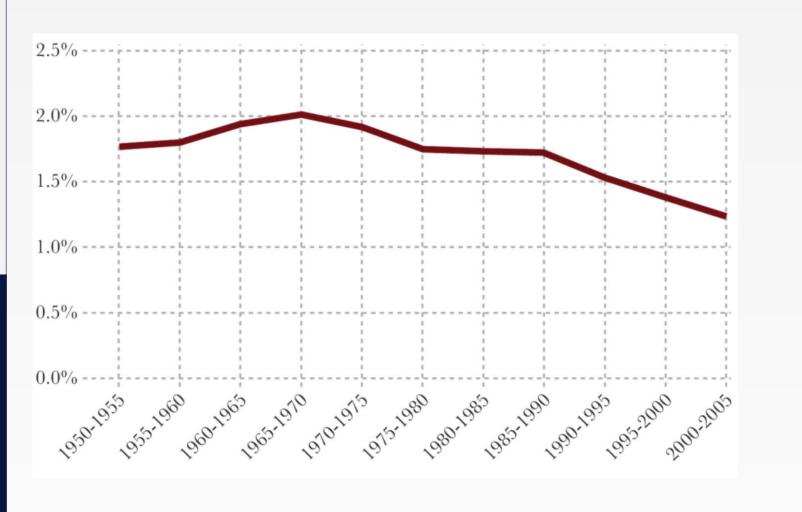
- the growing fertility of women in poor regions is the reason why the earth has to maintain 7 billion people with forecasts of 9 billion in twenty years and even more in the distant future.
- in developed" countries, fertility rates are lower than 2.1.
- 2.1 = "substitution level": if the rate drops well below 2.1, the population will decrease over time, if it rises too much, the population will be very young with catastrophic consequences e.g. high rates of violence and crime.

UNIVERSITÀ DEGLI STUDI DI MILANO

Ridley says that:

- On average, fertility rate in poor countries in the years prior to 2010 was decreasing
- On average fertility in rich countries is growing
- If the trend continues like this, global fertility will stand at 2.1 and the global population will be 9 billion, so DO NOT PANIC!

Is this true?


Ridley's book cites data taken from United Nations (UN) and World Bank databases, but in the book the only trend seen is that of world population growth compared to the previous year.

No other graph or picture.

UNIVERSITÀ DEGLI STUDI DI MILANO

3/17/2020

Lezione 1

The picture in Ridley's book

Mean world fertility rate (children per woman)

42

http://data.un.org/ (search for UN data: found it while searching for UN website).

It's a web database with any sort of data.

Let's download the nations' fertility reates

43

UNdata record	view Total fertil × +				- 6
\rightarrow G D	③ Not secure data.un.org/Data.aspx?q=Ferti	ity&d=PopDiv&f=variableID%3a54			o 🛧 O 🛧 D
Apps Ġ Goog	gle 🚾 Scopus - Document 📙 STATISTICA 🔇 W	4 - Dettagli Piano 🛛 🛋 Misleading Graphs:	D3 Tutorial - Learn 🥰	3 HTML Tutorial 🔇 Home 🚿 Scientifi	ic and Large 🔿 What is an Infograp
A world of information	tamarts Update Calendar Glossary API More rtility Search				Find us on 🕒 Follow us 🕞 Follow us 🕞 on Twitter
, ,	pirths per woman) 🗳 Search glossaries				
	\sim	Link to this page			
filters:	Country or Area		Year(s)	Variant	8670 records Page 1 of 174 Value
or Area (289)	Afghanistan		2095-2100	Medium	1.72
nanistan 🔺	Afghanistan		2090-2095	Medium	1.724
nia	Afghanistan		2085-2090	Medium	1.734
ria	Afghanistan		2080-2085	Medium	1.75
rican Samoa	Afghanistan		2075-2080	Medium	1.775
vrra 👻	Afghanistan		2070-2075	Medium	1.811
(30)	Afghanistan Afghanistan		2065-2070 2060-2065	Medium Medium	1.863
-2100 ^	Afghanistan		2055-2060	Medium	2.025
	Afghanistan		2050-2055	Medium	2.131
	Afghanistan		2045-2050	Medium	2.26
-2090	Afghanistan		2040-2045	Medium	2.426
5-2090 0-2085	Afghanistan		2035-2040	Medium	2.632
-2090 -2085 -2080	Afghanistan		2030-2035	Medium	2.908
-2090 -2085 -2080 -2075 ¥			2025-2030	Medium	3.301 3.851
-2090 -2085 -2080 -2075 ¥	Afghanistan				
i-2090 i-2085 i-2080 i-2075 ¥	Afghanistan Afghanistan		2020-2025	Medium	
5-2090 0-2085 5-2080 0-2075	Afghanistan Afghanistan Afghanistan		2015-2020	Medium	4.555
5-2090 0-2085 5-2080 0-2075	Afghanistan Afghanistan Afghanistan Afghanistan		2015-2020 2010-2015	Medium Medium	4.555 5.447
0-2095 5-2090 0-2085 5-2080 0-2075 ••••••••••••••••••••••••••••••••••••	Afghanistan Afghanistan Afghanistan		2015-2020	Medium	4.555

Source: United Nations Population Division

The 2019 Revision of World Population Prospects represents the latest global set of demographic estimates and projections prepared by the Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. It displays key demographic indicators for selected periods or dates from 1950 to 2100, for the world, development groups, regions, subregions, and countries or areas with more than 90,000 inhabitants in 2019. For countries or areas with fewer than 90,000 inhabitants in 2019, only figures related to population size and growth are provided. The estimates and projections contained in this revision cover a 150-year time horizon, which can be subdivided into estimates (1950-2020) and projections (2020-2100). A sample set of summary indicators are provided as pay age and sex are available from the Population Division's website. Citation: United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects: The 2019 Revision, DVD Edition.

- - -

Last update in UNdata: 2019/06/17 Next update in UNdata: 2021/06/15

Online data

🖸 Homepage

Data Source

Contact

UNdata record	view Total fertili	× +																														_	٥
\leftrightarrow) G \heartsuit	 Not secu 	ure data.	un.org	/Data	.aspx?c	q=Fert	tility&c	l=Pop	Div&f=	variak	leID%	3a54																	Q	☆	0	🔶 sc	
🗰 Apps 🛛 G Goog	le <mark>SC</mark> Scopus	- Document	📘	STATI	ISTICA	S \	W4 - De	ettagli P	iano	 N	∕lislead	ing Gra	aphs:		D3 Tute	orial - L	earn	ച്ചാ	HTML 1	Tutorial	3	Home	X 5	Scientifi	c and L	.arge	\bigcirc	What is	s an Info	ograp			
NUNUALA	tamarts Update Caler rtility	ndar Glossary		ore Search																										Fine Fac	i us on 👔	Follow us on Twitter	Send Feedb
Statistics																																	
Total fertility rate (live b Source: World Population Prosp				n Division																													
	Download Select	download forr	nat:	×	Elect piv	vot.column	🚾 Link to th	nis page																									
Select filters:	Structu	ured																														cords Page 1	of 6 🕨 🕅
Country or Area (289)	Coun	ก			1960- 1965	1965- 1970	1970- 1975	1975- 1980	1980- 1985	1985- 1990	1990- 1995	1995- 2000	2000- 2005	2005- 2010	2010- 2015	2015- 2020	2020- 2025	2025- 2030	2030- 2035	2035- 2040	2040- 2045	2045- 2050	2050- 2055	2055- 2060	2060- 2065	2065- 2070	2070- 2075	2075- 2080	2080- 2085	2085- 2090	2090- 2095	2095- 2100	
Afghanistan	Afghanistar XM	3 		15	7.45	7.45	7.45	7.45	7.45	7.469	7.482	7.654	7.182	6.478	5.447	4.555	3.851	3.301	2.908	2.632	2.426	2.26	2.131	2.025	1.935	1.863	1.811	1.775	1.75		1.724	1.72	
Africa Albania	Africa			25	6.699	6.706	6.703	6.64	6.501	6.187	5.724	5.351	5.077	4.9	4.73	4.438	4.155	3.893	3.651	3.434	3.242	3.071	2.922	2.79	2.675	2.57	2.478	2.397	2.322	2.255	2.195	2.141	
Algeria	Albania	separated		16	6.23	5.259	4.6	3.9	3.409	3.15	2.786	2.384	1.946	1.64	1.714	1.62	1.545	1.489	1.461	1.465	1.486	1.508	1.534	1.558	1.582	1.603	1.619	1.636	1.655	1.665	1.678	1.688	
American Samoa	Algeria	a, a;	al	34	7.648	7.648	7.572	7.175	6.315	5.302	4.12	2.885	2.384	2.724	2.96	3.05	2.789	2.59	2.433	2.312	2.213	2.131	2.064	2.013	1.976	1.942	1.916	1.898	1.881	1.865	1.852	1.843	
🗌 Andorra 🚽	American S Com		Pipe																														
Year(s) (30)	Andorra																																
	Angola	Medium	6	6.5	6.9	7.3	7.5	7.456	7.456	7.4	7.1	6.75	6.55	6.35	6	5.55	5.213	4.904	4.616	4.342	4.106	3.882	3.684	3.508	3.351	3.204	3.077	2.958	2.846	2.756	2.667	2.577	
2035-2040 2030-2035	Anguilla Antigua and Barbuda	Medium Medium	4.5	4.5	4.3	4	3.26	2.24	2.14	2.07	2.09	2.2	2.16	2	2	2	1.95	1.912	1.874	1.847	1.82	1.805	1.79	1.779	1.775	1.771	1.765	1.764	1.76	1.758	1.759	1.761	
₹ 2025-2030	Argentina	Medium	3.154	3.127	3.09	3.05	3.15	3.4	3.15	3.053	2.914	2.63	2.48	2.37	2.33	2.268	2.199	2.138	2.076	2.025	1.974	1.933	1.899	1.87	1.849	1.831	1.818	1.806	1.798	1.792	1.783	1.778	
2020-2025	Armenia	Medium	4.494	4.9	4.453	3.447	3.037	2.6	2.5	2.6	2.38	1.75	1.65	1.72	1.72		1.758	1.76	1.764	1.765	1.77	1.77	1.772		1.776	1.775	1.776	1.777	1.777	1.778	1.779	1.778	
2015-2020	Aruba	Medium	5.65	5.15		3.301	2.651	2.45	2.358	2.3	2.174	1.953	1.816	1.76	1.8	1.9	1.884	1.868	1.859	1.849	1.844	1.839	1.836	1.83	1.827	1.825	1.823	1.821	1.821	1.818	1.818	1.817	
C 2010 2015	Asia	Medium	5.831	5.591	5.797	5.745	5.056	4.097	3.689	3.497	2.896	2.607	2.447	2.328	2.21	2.152	2.093	2.045	1.997	1.945	1.905	1.876	1.856	1.834	1.815	1.796	1.782	1.775	1.768	1.764	1.76	1.758	
Apply Filters	Australia	Medium	3.18	3.406	3.274	2.871	2.535	1.989	1.91	1.859	1.863	1.787	1.774	1.952	1.885	1.832	1.784	1.759	1.746	1.731	1.723	1.719	1.72	1.723	1.722	1.724	1.727	1.73	1.735	1.735	1.739	1.741	
,	Australia/New Zealan	nd Medium	3.274	3.529	3.381	2.957	2.59	2.023	1.922	1.889	1.898	1.815	1.804	1.985	1.91	1.844	1.796	1.768	1.751	1.735	1.726	1.722	1.722	1.724	1.724	1.724	1.727	1.73	1.734	1.735	1.739	1.741	
	Austria	Medium	2.105	2.565	2.778	2.569	2.037	1.651	1.596	1.448	1.484	1.388	1.38	1.399	1.449	1.529	1.571	1.603	1.631	1.652	1.67	1.684	1.695	1.707	1.716	1.721	1.728	1.735	1.737	1.74	1.741	1.744	
	Azerbaijan	Medium	5.2	5.6	6	5.4	4.6	3.8	3.3	3.2	2.9	2.25	1.9	1.83	2.09	2.083	1.993	1.918	1.864	1.821	1.79	1.768	1.754	1.743	1.735	1.734	1.736	1.733	1.734	1.736	1.737	1.741	
	Bahamas	Medium	4.05	4.31	4.5	3.58	3.54	2.95	3.05	2.65	2.64	2.328	1.87	1.91	1.81	1.76	1.709	1.68	1.663	1.658	1.656	1.66	1.663	1.67	1.673	1.68	1.689	1.693	1.701	1.705	1.711	1.718	_
	Bahrain	Medium	6.97	6.97	7.17	6.97	5.95	5.23	4.63	4.08	3.4	2.95	2.65	2.25	2.12	1.998	1.891	1.799	1.723	1.67	1.637	1.619	1.612	1.616	1.621	1.629	1.64	1.651	1.662	1.672	1.682	1.694	•

Source

World Population Prospects: The 2019 Revision

Source: United Nations Population Division

The 2019 Revision of World Population Prospects represents the latest global set of demographic estimates and projections prepared by the Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. It displays key demographic indicators for selected periods or dates from 1950 to 2100, for the world, development groups, regions, subregions, and countries or areas with more than 90,000 inhabitants in 2019. For countries or areas with fewer than 90,000 inhabitants in 2019, only figures related to population size and growth are provided. The estimates and projections contained in this revision cover a 150-year time horizon, which can be subdivided into estimates (1950-2020) and projections (2020-2100). A sample set of summary indicators are available from the Population Division's website. Citation: United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects: The 2019 Revision, DVD Edition.

Last update in UNdata: 2019/06/17 Next update in UNdata: 2021/06/15

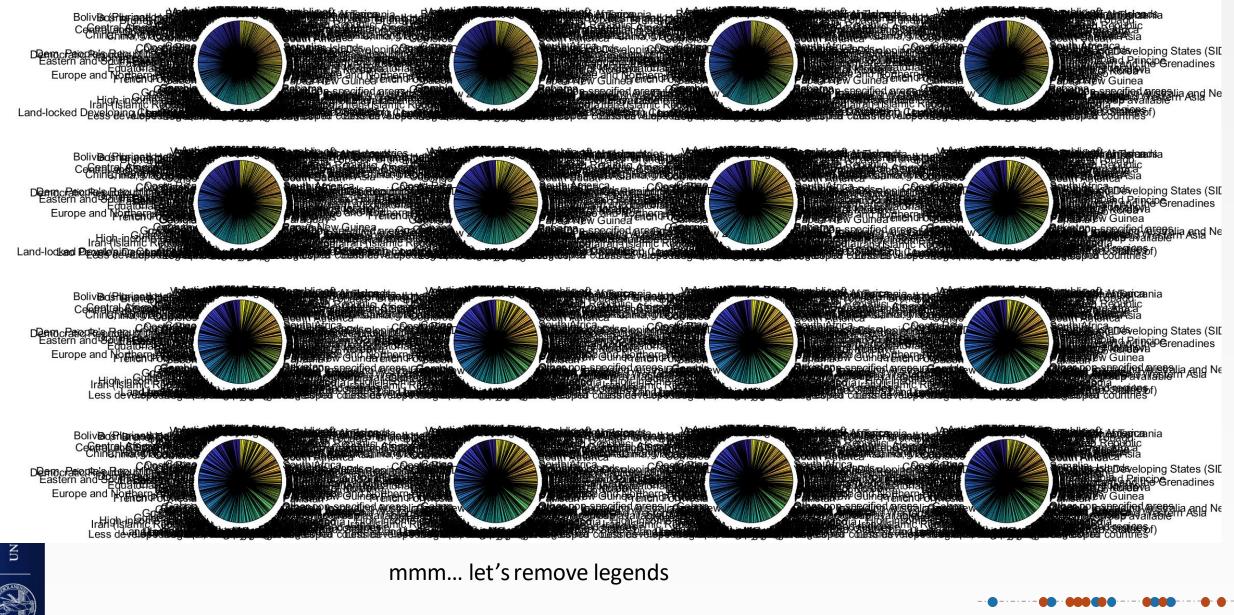
- C Online data
- 🖸 Homepage
- Data Source
- Contact

I downloaded this file (.csv)

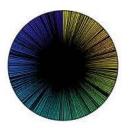
I cleaned it to have just nations with all numbers (there was some nations with no numbers....)

This is the cleaned file

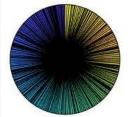
Let's try to make some plot....


Which one???

5 minutes to think....


UNIVERSITÀ DEGLI STUDI DI MILANO

What about pie chart?



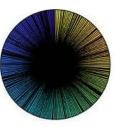
Lezione 1

1950-1955

1970-1975

1990-1995

2010-2015


1955-1960

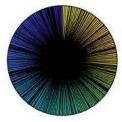
1975-1980

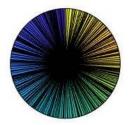
1995-2000

2015-2020

1960-1965


1980-1985

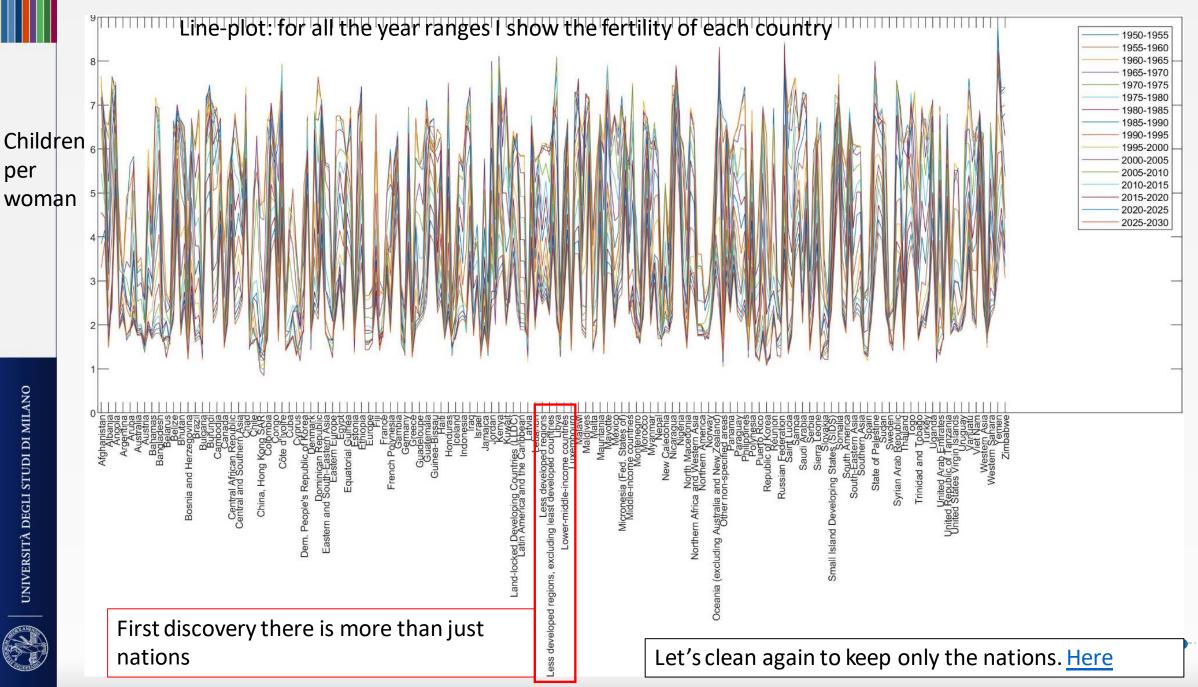

2000-2005


2020-2025

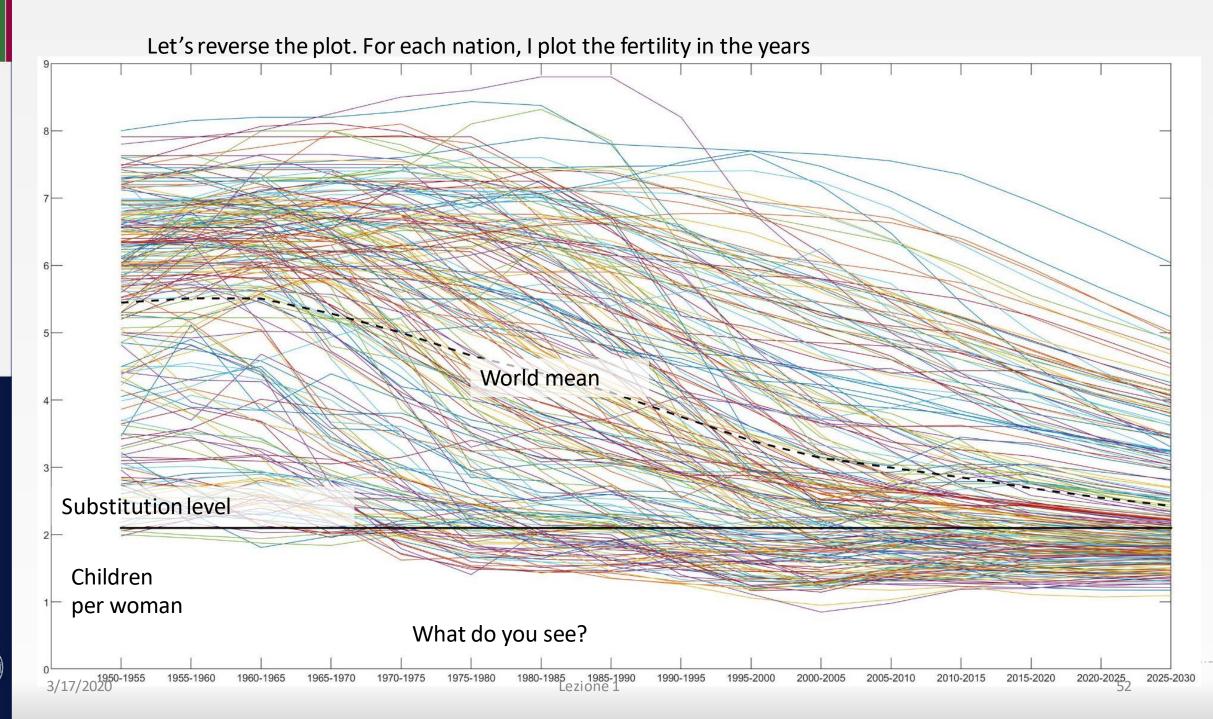
1965-1970

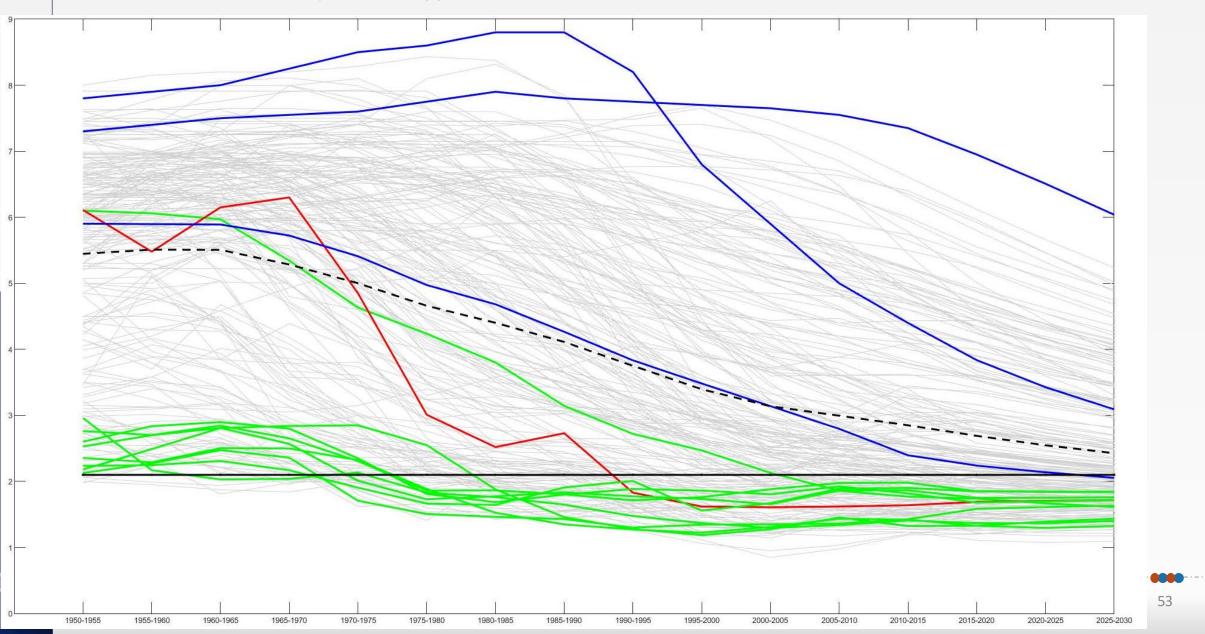
1985-1990

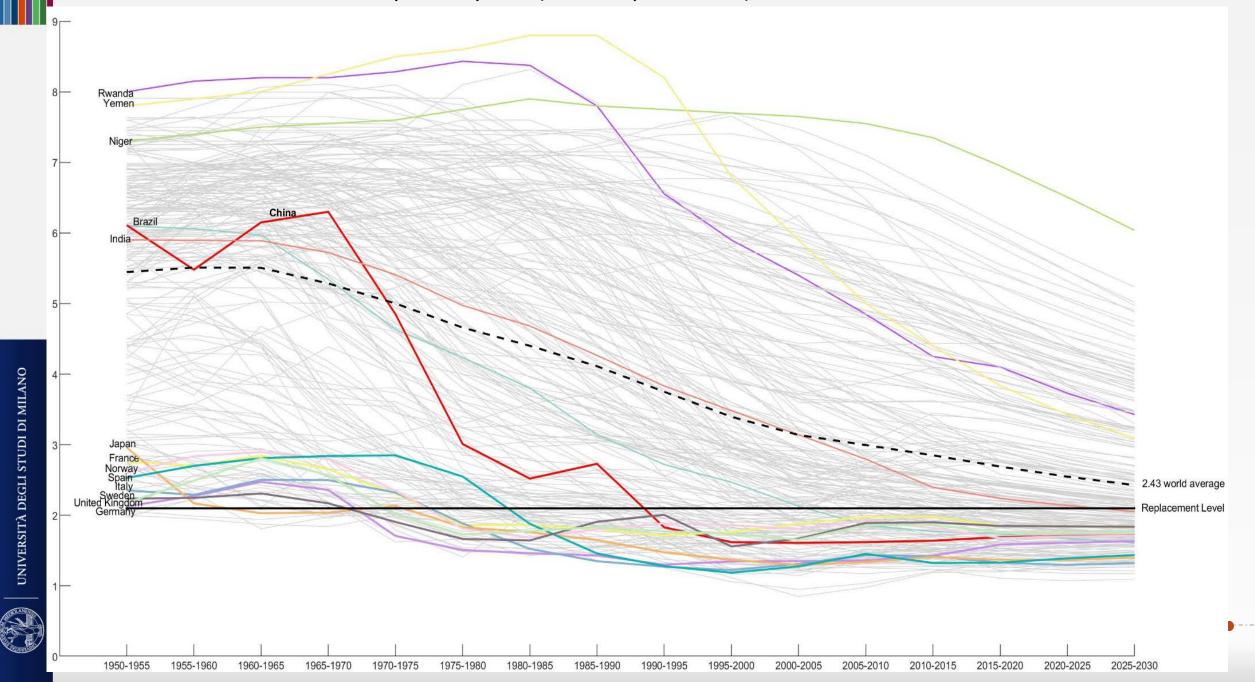
2005-2010


2025-2030

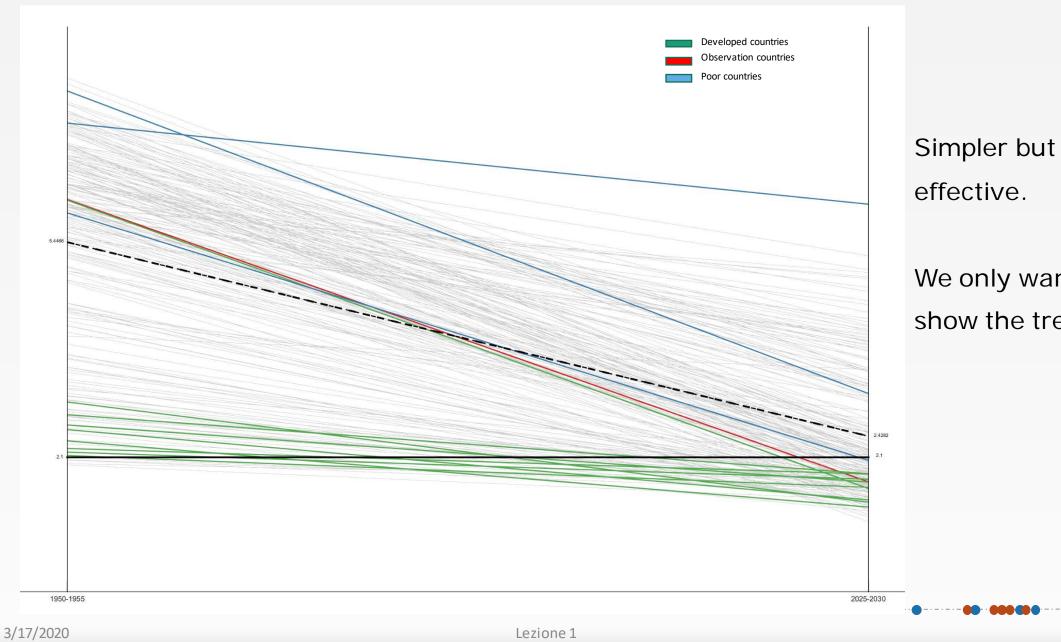
Let's try another plot ?


••••


NOW?? WHICH PLOT IS BEST??

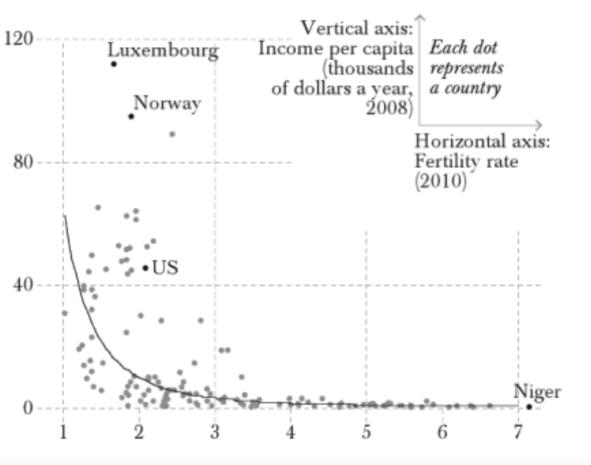


What if I only consider European countries and the poorest/biggest countries?



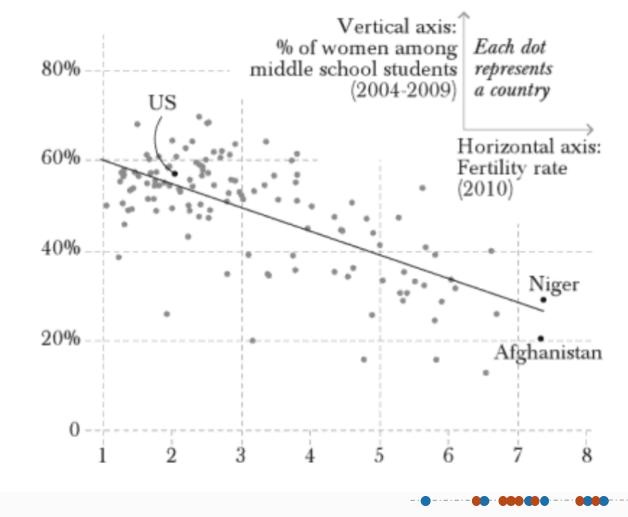
Per Country Fertility Rate (Children per woman) trend from 1950 to 2030

Now, what if we want to enforsize important details? we are only interested in what will happen in the future (2030)


effective. We only want to

show the trend

Per capita income and fertility rate


Other plots taken by working on UN data

UNIVERSITÀ DEGLI STUDI DI MILANO

Number of children decrease when women go to school

Percentage of middle school students who are women and fertility rate

Example: Anscombe's quartet

	I		II		III		IV		
x	У	x	У	x	У	X	У		
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58		
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76		
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71		
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84		
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47		
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04		
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25		
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50		
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56		
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91		
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89		

APRIAMO MATLAB ED ANALIZZIAMO I DATI:

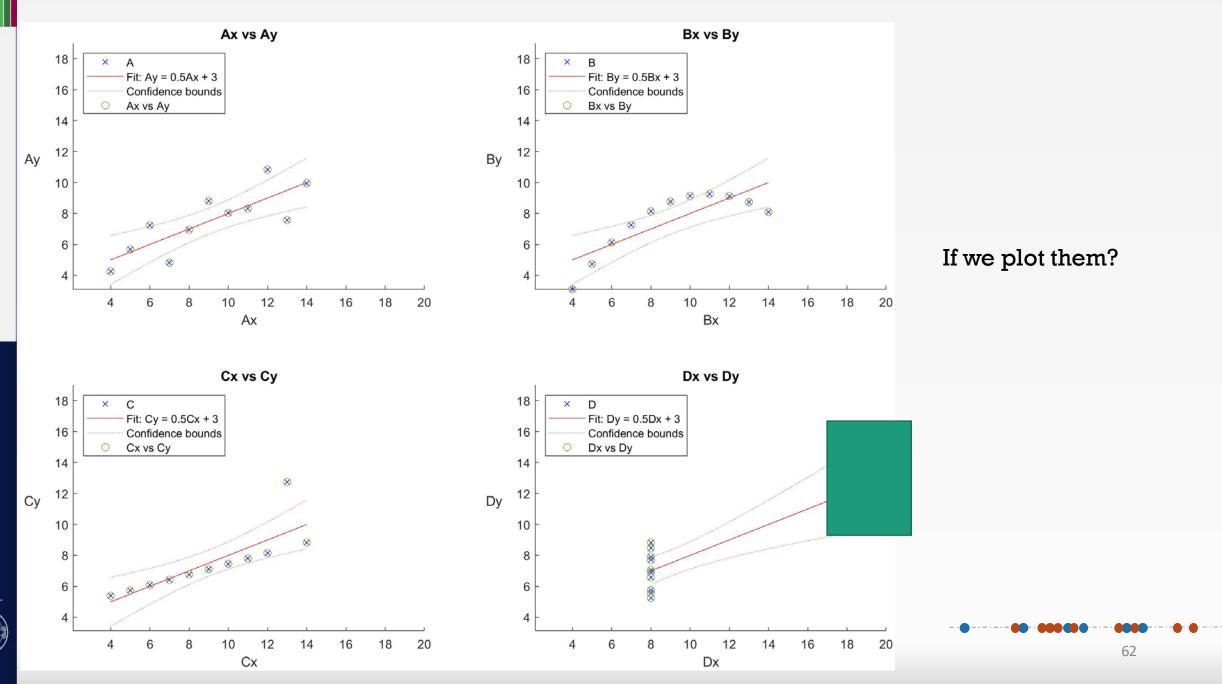
Command Window

New to MATLAB? See resources for <u>Getting Started</u>.

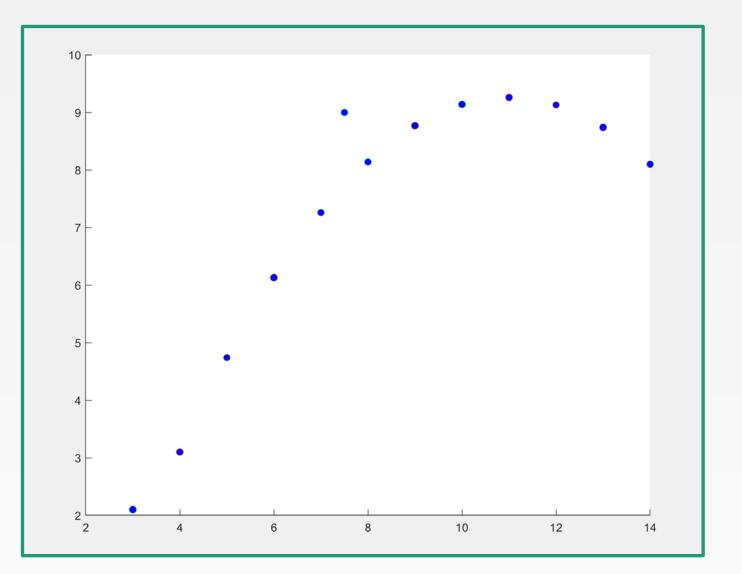
data =

11×8 <u>table</u>

	Ax	Ау	Bx	Ву	Сх	Су	Dx	Dy			
			—				_				
	10	8.04	10	9.14	10	7.46	8	6.58			
	8	6.95	8	8.14	8	6.77	8	5.76			
	13	7.58	13	8.74	13	12.74	8	7.71			
	9	8.81	9	8.77	9	7.11	8	8.84		Madiaa	deviazion
	11	8.33	11	9.26	11	7.81	8	8.47		medie e	devidzion
	14	9.96	14	8.1	14	8.84	8	7.04			
	6	7.24	6	6.13	6	6.08	8	5.25			
	4	4.26	4	3.1	4	5.39	19	12.5			
	12	10.84	12	9.13	12	8.15	8	5.56			
	7	4.82	7	7.26	7	6.42	8	7.91			
	5	5.68	5	4.74	5	5.73	8	6.89			
	'Ax'	'Ay'	'Bx'	'Ву	71	'Cx'	'Су'	'Dx'	'Dy'		
	means: 9	7.5	009		9	7.5009		9	7.5	9	7.5009
	stds: 3.3	8166	2.0316	3	3.3166	5 2.0	0317	3.316	2.0304	3.3166	2.0306
	corr Ax-A	Ay = 0.82									
	corr Bx-E	3y = 0.82									
	corr Cx-C	2y = 0.82									
-	corr Dx-D >>	0y = 0.82									


oni standard uguali

 \odot х


٨

 \checkmark

Editor - AnalizeAnscomb	e.m		💿 🗙 🛃 Varia	bles - cefs		2 1		
ommand Window ew to MATLAB? See resou	rces for Getting St	arted						
Linear Fits					^			
Ax vs Ay								
	Estimate	SE	tStat	pValue				
(Intercept)	3.0001	1.1247	2.6673	0.025734				
x1	0.50009	0.11791	4.2415	0.0021696				
Bx vs By								
	Estimate	SE	tStat	pValue				
						Same trend	: linear fitting	outpu
(Intercept) x1	3.0009 0.5	1.1253 0.11796	2.6668 4.2386	0.025759 0.0021788		the same res	ult	
Cx vs Cy								
	Estimate	SE	tStat	pValue				
(Intercept)	3.0025	1.1245	2.6701	0.025619				
x1	0.49973	0.11788	4.2394	0.0021763				
Dx vs Dy								
	Estimate	SE	tStat	pValue				
(Intercept)	3.0017	1.1239	2.6708	0.02559				
x1	0.49991	0.11782	4.243	0.0021646				

I	I
x	У
10.0	9.14
8.0	8.14
13.0	8.74
3.0	2.1
9.0	8.77
11.0	9.26
14.0	8.10
6.0	6.13
4.0	3.10
12.0	9.13
7.5	9.0
7.0	7.26
5.0	4.74
	x 10.0 8.0 13.0 3.0 9.0 11.0 14.0 6.0 4.0 12.0 7.5 7.0

An outlier can be esily detected...

3/17/2020

UNIVERSITÀ DEGLI STUDI DI MILANO

63

3/17/2020

Let's try to use MATLAB to redo the Plots

And, if you like,

HERE you find modifiable charts about COVID-19

Stephen Few:

Each of the examples that appear below illustrates quantitative information that is poorly

designed for communication.

Look at Stephen's solutions

Information Visualization

Scientific Visualization versus Information Visualization

Narrative Visualization: Telling Stories with Data

